Search results for "PHOTONIC BAND GAP"
showing 5 items of 5 documents
Transmission properties at microwave frequencies of two-dimensional metallic lattices
1999
The transmission properties of different metallic photonic lattices (square and rectangular) have been experimentally studied. A numerical algorithm based on time domain finite differences has been used for simulating these photonic structures. The introduction of defects in the two-dimensional metallic lattice modifies its transmission spectrum. If metal rods are eliminated from (or added to) the lattice, extremely narrow peaks are observed at some particular frequencies below (or above) the band pass edge. Vicente.Such@uv.es ; Enrique.Navarro@uv.es
Guiding and reflecting light by boundary material
2003
We study effects of finite height and surrounding material on photonic crystal slabs of one- and two-dimensional photonic crystals with a pseudo-spectral method and finite difference time domain simulation methods. The band gap is shown to be strongly modified by the boundary material. As an application we suggest reflection and guiding of light by patterning the material on top/below the slab.
2D photonic defect layers in 3D inverted opals on Si platforms
2006
Dielectric spheres synthesised for the fabrication of self-organized photonic crystals such as opals offer large opportunities for the design of novel nanophotonic devices. In this paper, we show a hexagonal superlattice monolayer of dielectric spheres inscribed on a 3D colloidal photonic crystal by e-beam lithography. The crystal is produced by a variation of the vertical drawing deposition method assisted by an acoustic field. The structures were chosen after simulations showed that a hexagonal super-lattice monolayer in air exhibits an even photonic band gap below the light cone if the refractive index of the spheres is higher than 1.93.
Role of dispersion on zero-average-index bandgaps
2009
We consider periodic multilayers combining ordinary positive index materials and dispersive metamaterials with negative index in some frequency ranges. These structures can exhibit photonic bandgaps which, in contrast with the usual Bragg gaps, are not based on interference mechanisms. Changing the dispersion models for the constituent metamaterial, we investigate its role in the production of zero-average-index bandgaps. In particular, we show the effect of each constitutive parameter on both bandgap edges. Finally, we give some approximated analytical expressions in terms of average parameters for the determination of the upper and lower limits of the zero-average refractive-index bandgap…
Discrete exterior calculus for photonic crystal waveguides
2022
The discrete exterior calculus (DEC) is very promising, though not yet widely used, discretization method for photonic crystal (PC) waveguides. It can be seen as a generalization of the finite difference time domain (FDTD) method. The DEC enables efficient time evolution by construction and fits well for nonhomogeneous computational domains and obstacles of curved surfaces. These properties are typically present in applications of PC waveguides that are constructed as periodic structures of inhomogeneities in a computational domain. We present a two-dimensional DEC discretization for PC waveguides and demonstrate it with a selection of numerical experiments typical in the application area. …